Heavy Ion Program

Nuclear, Particle, Astrophysics and Cosmology (NPAC) Capability Review 14-16 April 2010

Melynda Brooks, P-25

Overview

- Heavy Ion Physics Program studying deconfined quarks and gluons through heavy ion collisions.
- Sponsored by DOE Office of Science, Nuclear Physics
- ▶ Directly supports the Science Mission and "Predictions for the state of matter in the early universe, quark confinement..."
- ▶ People involved P-25 PHENIX Team, P-23 (experimental), T-2 (theory), AOT + ISR (electronics development)
- Peers PHENIX Groups at BNL (22 scientists + 15 technical staff),
 ORNL, Livermore

Funds Supporting PHENIX Team Efforts

DOE Supported Efforts

Heavy Ion Physics - RHIC Heavy Ion Physics

\$2498k/FY10

Medium Energy Physics - RHIC Spin and Cold Nuclear Matter, JLAB

\$1035k/FY10

FVTX (Forward Silicon Vertex Detector Upgrade Project for PHENIX)

VTX (Barrel Vertex Detector, Upgrade Project)

~\$2500k at LANL

LDRD-Supported Efforts

First Unambiguous Measurement of Jet Fragmentation and Energy Loss in the Quark Gluon Plasma

2009-2011 \$575k/year

The First Precise Determination of Quark Energy Loss in Nuclei (FNAL E906)

2008-2010 \$250k/year

Christine Aidala, Frederick Reines Post-Doc

2009-2011 \$180k/year

Andrew Puckett, Director's funded Post-Doc

2009-2010 \$125k/year

PHENIX Team, visitors

Technical Staff Members:

Melynda Brooks, Xiaodong Jiang, Jon Kapustinsky, Gerd Kunde, David Lee, Mike Leitch, Ming-Xiong Liu, Pat McGaughey, Walt Sondheim, Hubert vanHecke

Post-Docs:

Lei Guo, Han Liu, Zhengyun You, Christine Aidala,, Andrew Puckett, Catherine Silvestre

Students and Full-Time Visitors:

Hisham Albataineh (NMSU, recently graduated), Hussein Al'Taani (NMSU, now at BNL) Hugo Pereira (staff, Saclay), Xiaorong Wang (NMSU staff)

4.9 FTE Staff + 2.5 FTE PD on DOE Heavy Ion funds

1.0 FTE Staff + 3.0 FTE Post-Docs on LDRD funds

Probing the Quark Gluon Plasma (QGP) – Quark Energy Loss

- Quark Energy Loss Measurements in Quark Gluon Plasma (QGP) to Extract QGP Properties:
 - Leading hadron measurements allow one to infer light quark energy loss (poor-man's jet)

Leads to prediction of QGP density, but ambiguity from trigger method, jet not fully reconstructed, only constrains light quarks

Probing the QGP - Quark Energy Loss

LANL roles:

Operated by Los Alamos National Security, LLC for NNSA

- ➤ Project Management of FVTX
- > Subsystem management for sensors, readout chips, responsible for DAQ development
- > Leading physics program development

*LDRD funded R&D, transitioned to approved \$5M construction project in FY09

Heavy Ions

Probing the QGP - Quark Energy Loss

LANL roles:

- ➤ Produced full simulation of Z⁰-tagged jet sensitivity to fragmentation function modifications and will lead real data analysis
- > Providing theoretical model development needed to interpret results
- ➤ Providing hardware upgrade to CMS Pixel Detector to allow efficient data-taking in Heavy Ion environment

*LDRD funded, expect to transition to DOE funds in FY12

Probing the QGP - Color Screening

Color Screening in the QGP

- \circ Lattice QCD predicts color screening of c-cbar pair (J/ ψ precursor) if QGP reaches high enough temperatures
- \circ RHIC data indicate J/ ψ suppression beyond cold-nuclear matter extrapolations

Better cold-nuclear matter extrapolations, other vector meson measurements would better constrain interpretation > More RHIC analyses, FVTX, E906

New Vector Meson Measurements in d+Au

- Improved J/ψ measurements from RHIC Run 8
- Upsilon measurements emerging
 - > Enabled by increasing luminosities
 - Known to have strong CNM effects from FNAL measurements
 - ➤ Leitch, Butsyk, Brooks p+p Y prelim. 2005
 - Kwangbok Lee (Korea U.), Leitch, ... working on 2008
 +Au & 2006 p+p Υ data (also working on χ_c using MPC)
- \succ FVTX will allow ψ ' measurements

Measurement of ϕ (s-sbar) R_{CP}

- > Enabled by increasing luminosities, better trigger
- ➤ Lei Guo carrying out full analysis

Backward rapidity

PHENIX Preliminary (2008 data) 1.8 $d+Au \rightarrow V+X$ at $\sqrt{s} = 200$ GeV, $V \rightarrow \mu^+\mu^-$ 1.6 -2.4 < y < -1.3, $p_T > 0.9$ GeV/c ρ/ω , ϕ , $J/\psi < p_T > = 2.0$, 1.9, 1.6 GeV/c 1.4 0.8 0.6 0.4 0.2 Sys. Err. (Scale Uncertainty 11.6,28.2% not shown) 0 2 4 6 8 10 12 14 16 18

forward rapidity

OUO

Complexity of Cold Nuclear Matter Effects

FNAL E906 Will Extract Quark Energy Loss

LANL Leadership in Heavy Ions

- ▶ LANL Leader in the Heavy Ion PHENIX Collaboration, helping direct the physics program
 - Executive and Detector Council Members, Physics Working Group Conveners, Leading analyses and future directions
- Making Significant Technical Contributions
 - LANL built and supported PHENIX Muon Trackers
 - Leading new Forward Silicon Vertex Detector Project
 - Mechanical oversight for VTX and FVTX
 - PHENIX Upgrades Manager, Run Coordinator, Period Coordinators, on-call technical experts
- Leading New Directions

Operated by Los Alamos National Security, LLC for NNSA

- Expanding PHENIX physics program with upgrades
- Exploring Heavy Ion physics at new energy frontiers (LHC)
- Working with local theorists, FNAL E906 to disentangle cold nuclea matter effects from quark gluon plasma effects

LANL Contributed PHENIX Muon Trackers

Muon Tracker Contributions - Designed, built, installed, commissioned muon tracker systems.

Current Responsibilities - DC Member, provide many on-call expert shifts per run, coordinate and perform maintainence each shut down, working closely with Muon Trigger upgrade Muon Tracker Analyses - Have provided much of the simulation and reconstruction software, as well as online QA software for the Muon Trackers. Lead roles in most muon physics analyses (sustained staff, post-doc effort required for maintenance of detectors)

Successfully Collecting Data since 2001

OUO

Heavy ions

Forward Silicon Vertex Detector (FVTX)

LANL-Led Upgrade Project

 Providing Project Management, DAQ, Sensors Readout Chips, Mechanical Engineering and Integration with VTX

Silicon Sensor Wedge Components

- Prototype sensors procured, tested, and production order placed
- Readout Chip prototypes tested, production order received
- Kapton Interconnect prototype tested, production order placed
- Backplane production order placed

Detector Assembly

- · Wedge fixtures procured, Several prototype wedges assembled
- Full detector assembly areas at BNL prepared

DAQ

- Prototype readout cards procured and tested
- Production this FY

Mechanics

Mechanical structures designed, procurements underway

Operated by Los Alamos National Security, LLC for NNSA

Summary

- Leading the understanding of color screening with J/ ψ , ψ ', upsilon measurements
- Actively working to understand cold nuclear matter effects with measurements from RHIC, E906, work with theorists
- ▶ QGP energy loss will be much better understood with the addition of precision open heavy flavor measurements, Z⁰tagged jets
- Providing significant hardware contributions: PHENIX Muon Trackers, FVTX, E906 Muon Identifiers
- Effective use of LDRD funds, transitioning to large DOEsupported efforts

Future Directions

▶ CNM with RHIC, FVTX, E906

OUO

Extrapolating from d+Au to Au+Au

Cold Nuclear Matter (CNM) Physics

NSAC Milestone: DM8 - "Determine gluon densities at low x in cold nuclei via p + Au or d + Au collisions."

• Leading twist gluon shadowing $Q^2 = 1.69 \, \text{GeV}^2$

Coherence models & higher-twist
 (HT) shadowing

 Small-x gluon saturation: 2→ 1 diagrams become important and deplete the low-x region; amplified in a nucleus.

NSAC Milestone: DM12 - "...constrain the mechanism for parton energy loss in the quark-gluon plasma." And what about energy loss in cold

OUO

12/14/1999 vy lons

LHC Accomplishments and Results

▶ CMS Dimuon Analysis:

- Z^o in heavy ion (year one cross section measurement)
- Catherine Silvestre now convener of CMS HI dilepton group
- Developed new important idea for year one Et measurements
 - Analysis package for transverse energy under development
- ▶ Heavy Ion Detector Readiness
 - Analyzed Muon Drift Tube performance in heavy ion coll.
 - Detailed MC study of Front End Driver (FED) bottleneck
 - Currently building FPGA based test system to test actual readout sy CERN with realistic HI event and time structure
 - Developing solution for HI pixel readout problem

 Replace the fiber translators with serial receivers fo FGPA driven HI events with realistic time structure